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Review 
Analysis of the kinetics of phase transformations 

E.J. M I T T E M E I J E R  
Laboratory of Metallurgy, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, 
The Netherlands 

A common basis of reaction-rate theories is discussed for isothermal and non-isothermal 
transformations. As a result compatible recipes have been obtained for the extraction of kinetic 
parameters from isothermally and non-isothermally conducted experiments. It follows that 
so-called Kissinger-like methods for non-isothermal kinetic analysis, originally derived for 
homogeneous reactions, can also be applied to heterogeneous reactions, and that these methods 
constitute (only) a special case of the general analysis proposed. The recipes presented are 
illustrated by a series of examples taken from recent research on solid-state transformations; 
among other things, isothermal and non-isothermal analyses of the same transformation are 
compared and use of the notion of "effective activation energy", that varies during the course of 
an overall transformation, is discussed. 

1. Introduction 
This paper has arisen out of my interest over a period 
of 20 years in solid-state transformations. At irregu- 
larly spaced moments of time it was felt neces- 
sary to determine kinetic parameters of phase 
transformations studied. To this end, annealing ex- 
periments were conducted in either an isothermal or 
a non-isothermal fashion. What may be called "stand- 
ard procedures" were employed to evaluate the kinetic 
data, as activation energies; reaction-rate theory itself 
was normally not the focus of attention. 

Nevertheless, over the years some knowledge on 
kinetic analysis has accumulated, which led to the 
growing awareness that this is One area where ill- 
considered statements are made and analyses are 
applied inconsiderately, by many. Three examples of 
this are: 

(i) "non-isothermal analyses are inferior to isother- 
mal analyses"; 

(ii) application of the so-called Kissinger analysis to 
solid-state transformations; 

(iii) adoption of homogeneous reaction-rate theory 
for solid-state transformations. 
Whilst not wishing to imply that the results presented 
in such contexts are necessarily wrong, the present 
assertion is that a balanced discussion and, appar- 
ently, profound insight is often lacking. 

The present paper has been devised to summarize 
my personal, current view on the basis of kinetic 
analyses of, in particular solid-state, transformations, 
thereby producing recipes for the extraction of kinetic 
data. It emanates from an earlier paper [1] and it is 
tributary to, especially, references [2-4]. Hence, the 
paper is not original. However, I believe that the 
treatment given here can be useful for those interested 
in determining kinetic parameters, I hope that this, at 
some places, possibly provocative and thus somewhat 
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unusual contribution assists in avoiding delusive 
notions. 

2. Thermal history and the stage of 
t ransformat ion 

For the analysis of solid-state transformation kinetics 
a physical property (e.g. hardness, specific volume/ 
length, electrical resistivity, enthalpy, magnetization) 
of the material subject to investigation can be traced 
as a function of time and temperature. Then the degree 
of transformation (fraction transformed), f, can be 
defined, for example, as 

f - (P  - P o ) / ( P t  - Po) 0 __<f< 1 (t) 

where p is the physical property measured during the 
course of transformation and Po and Pl correspond 
with the values of p at the start and finish of the 
transformation, respectively. In non-isothermal ana- 
lysis, Po and Pl cannot normally be considered as 
constants (Fig. 1). 

For thermally activated transformations, the ther- 
mal history of a specimen determines its stage of 
transformation. Consider the temperature-time, T t ,  
diagram depicted in Fig. 2. A specimen experiencing 
a thermally activated phase transformation proceeds 
from "State 1 (tl, T~)" to "State 2 (t2, T2)" via either 
path a or path b. Clearly, although the time to proceed 
from State 1 to State 2 is the same for both paths, the 
higher temperatures operating along path b cause 
a stage of transformation in State 2 for path b which is 
more advanced than that reached along path a. The 
stage of transformation in State 2 depends, in general, 
on the path followed: for non-isothermal analysis, 
t and T are not state variables for the stage of trans- 
formation. 
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(b) ~ T Figure 1 Schematic presentation of the behaviour of the physical 
property, p, sensitive to the stage of transformation, during (a) 
isothermal analysis and (b) non-isothermal analysis. 

If the transformation mechanism is invariable for 
the region in the T-t diagram considered, it is tempt- 
ing to interpret [3 as proportional to the number of 
atomic jumps, because T determines the atomic mo- 
bility and t defines the duration of the process con- 
sidered. Against this background the following 
postulate is given 

isothermal annealing 

[3 = k(T)t (3a) 

nonis0thermal annealing 

[3 = f k(T)dt  (3b) 

with k as the rate constant; note that k(T) depends on 
t in Equation 3b. Next, an Arrhenius-type equation is 
adopted for the rate constant 

k = k o e x p ( -  E/RT) (3c) 

implying that the temperature dependence of the 
transformation, in the region of the T-t diagram con- 
sidered, can be described by an (effective, cf. Section 4 
and Appendix 2) activation energy, E; ko and R denote 
the pre-exponential factor and the gas constant, re- 
spectively. Use of an Arrhenius-type equation for rate 
constants is universally accepted and relies on com- 
patible analyses of experimental data of transforma- 
tion kinetics, but rigorous theoretical justification for 
its applicability is lacking. 

k 

~ 2  

1 

~ t  

Figure 2 Temperature (T)-time (t) diagram. A specimen experien- 
cing a thermally activated phase transformation proceeds from 
"State 1 (tl, T1 )" to "State 2 (tz, Tz)" via either path a or path b. The 
stage of transformation in "State 2" depends on the path followed. 
Hence, in general t and T are not state variables for the stage of 
transformation. 

Thus it appears appropriate to introduce a variable, 
[3, that is fully determined by the path followed in the 
temperature-time diagram: T(t) prescribes [3. Hence, 
the fraction transformed is fully settled by the state 
variable [3 

f = F([3) (2) 

Equation 2 does not impose constraints on the type of 
transformation considered: the relation betweenfand 
[3, i.e. F, has not been specified; it is only claimed that, 
given the path followed in the T-t diagram, f is 
known. 
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3. The t ransformat ion  rate 
From Equation 2 it follows that 

df  dF([3) d[3 
- ( 4 a )  

dt d[3 dt 

Because, in the general case of non-isothermal anneal- 
ing, f and [3 (cf. Equation 2), are not uniquely deter- 
mined by the time and the temperature corresponding 
to that time, total differentials for f and [3 with T and 
t as variables are not allowed. For example d[3/dt 
cannot be expressed on the basis of Equations 3a 
and c as 

d~- = ~-  r + \ ~ T / / t a t  

dk dT 
= k + t ~ - T - ~  

E dT 
= 

The erroneous reasoning leading to the above expres- 
sion for d[3/dt, and to similar expressions for df/dt, has 
been applied at several places in the literature; e.g. [5]. 

In the above sense, a physically sound expression 
for d[3/dt is obtained by accepting the formalism of 
Equation 3a in the non-isothermal case but for an 
infinitesimal lapse of time: d[3 = kdt, which leads to 
Equation 3b. Then it immediately follows that the 
postulate given by Equations 3a and b implies that the 
formulae for the transformation rate in the isothermal 



and non-isothermal cases are identical 

df dF([3) d[3 

dt d[3 dt 

~ dF([3) 
= k(~) ~ (4b) 

Hence, [3, or f, and T are state variables for the trans- 
formation rate. This realization introduces the notion 
of "additivity": after the transformation has pro- 
gressed at temperatures different from T'  and a degree 
of transformation equal to fo has been attained, the 
course of subsequent transformation at temperature, 
T', is identical to that followed as if the degree of 
transformation fo would have been produced by iso- 
thermal transformation at T' (Fig. 3). 

Additionally, the separation of variables T and [3 (or 
f )  achieved in Equation 4b leads in a straightforward 
manner to the following integral equation for the time, 
t l ,  ' needed to attain a certain fraction transformed, 

f ' ,  in a non-isothermal annealing experiment (see 
Appendix 1): 

f l  ~' dt _ 
i so  t~, (r)  i (5) 

where t )  ~ denotes the time required to transform the 
fraction f '  isothermally at the temperature T. In 
words: conceiving a non-isothermal transformation as 
composed of a series of isothermally conducted steps, 
the total time required follows by adding relative 
durations of time spent at each temperature and 
equating this sum to one (cf. Fig. 3). 

4. Transformat ion mechanisms 
In principle, one can distinguish homogeneous and 
heterogeneous reactions. For-homogeneous reactions- 
the probability for the transformation to occur is the 
same for all locations in the virginal system con- 
sidered. As a result the transformation rate decreases 
monotonically from t = 0 onwards. Heterogeneous 
reactions, as transformations where nucleation and 

f '  

tfo(r) tf, is~ tfo(r') L-F, is~ 

Figure 3 I l lustrat ion of the "addi t ivi ty  principle". The  total  time, 
t i . ,  needed to a t ta in  a fraction t ransformed,  f ' ,  by annea l ing  first at 
a tempera ture ,  T, dur ing  tlo and  then at a t empera tu re  T',  is writ ten 
as (see figure): t I ,  = tlo(T ) + [t~S?(T ') - t lo(T ' ) ] .  Then,  according 
to Equa t ion  5 

t•o(r) [t~?(T') - tio(T')] tlo(T) [t I, - ts0(T)] 
- -  + + 1 
t~?(T) t)?(T') t~?(T) t]?(r') 

growth play a role, in general exhibit a maximal trans- 
formation rate at some t > 0. 

Solid-state transformations are normally of the het- 
erogeneous type. (An example to the contrary is the 
process of structural relaxation in amorphous solids, 
for which homogeneous reaction kinetics are adopted. 
Note, however, that crystallization of an amorphous 
solid is a heterogeneous process; cf. Section 9.3.) Then 
it is striking to observe that in the recent literature, 
extensive elaborations of homogeneous reaction kin- 
etics for application to solid-state transformations can 
still be found (e.g. see [6]). This also means that 
a procedure as the so-called Kissinger analysis and 
variants thereof for determination of activation ener- 
gies, which have been derived on the basis of homo- 
geneous reaction kinetics [7, 8], cannot, in general, be 
applied without further ado to most solid-state trans- 
formations; for a derivation of the generalized version 
of such methods, see Section 6. 

The prescription forf implying dependence only on 
the state variable 13 according to Equation 2 is fully 
compatible with, for example, (i) the well known result 
for homogeneous reactions 

(1 - - f ) l - m  = 1 - -  [ 3 ( 1 - - m )  m >  1 ( 6 a )  

ln(1 - f )  = - [ 3  m =  1 (6b) 

where m is order of reaction, and (ii) the 
Johnson-Mehl-Avrami (JMA) equation for hetero- 
geneous (solid-state) reactions 

f = 1 - exp( - [3")  (7) 

where n denotes the JMA exponent (note that Equa- 
tion 7 is identical to Equation 6b for n = 1). 

Hence it follows for the transformation rate in case 
(i) above of homogeneous reactions 

d f  = k(T)[1 - [3(1 - rrt)] [rn/(1 -m)] 
dt 

= k(T)(1 - f ) "  (8) 

and in case (ii) above of heterogeneous reactions 

df 
- n k ( T ) [ 3 , - l e x p ( _  [3") 

dt 

= nk(T)[ ln(1  - / ) - 1 ] [ ( , - 1 ) / , 3 ( 1  _ f )  (9) 

As discussed in Section 2, the equations of state for 
the degree of transformation are identical for the cases 
of isothermal and non-isothermal annealing if they are 
expressed in terms of [3; i f f  has to be expressed in 
terms of T and t, 13 should be substituted in accord- 
ance with Equations 3a and b, respectively. 

Irrespective of the application of either isothermal 
or non-isothermal analyses it should be realized that 
there is no generally valid theoretical justification for 
use of the JMA equation, as given by Equation 7, to 
describe solid-state transformations. In heterogeneous 
transformations the transformation rate can be con- 
trolled by more than one activation energy. In such 
a case applicability of the postulate for [3 (Equation 3), 
in principle, is questionable. In practice, Equation 3 
can still be used in many cases because one of the 
operating mechanisms can be (made) dominant, or the 
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activation energy determined may be conceived as an 
effective value presenting some weighted mean of the 
separate activation energies of the occurring mechan- 
isms (e.g. see Appendix 2). Also, the activation energy 
can vary as a function of the degree of transformation, 
because a change of governing mechanism can occur 
upon progressing transformation; if the effective ac- 
tivation energy can be traced as a function of the 
degree of transformation (see Sections 5 and 6), in this 
way revealing data on the phase transformation 
studied can be obtained (see Section 9.3). 

5. R e c i p e  f o r  i s o t h e r m a l  a n a l y s i s  
Without recourse to any kinetic model, i.e. F(]3) (cf. 
Equation 2) need not be known, a value for the activa- 
tion energy can be obtained from the lengths of time 
between two fixed stages of transformation f l  and f2, 
measured at a number of temperatures (fl can, but 
need not be, taken equal to its initial value: 0) (Fig. 4). 
It follows (cf. Equation 3a) k ( t l 2  - t r  = ~I2  - ~ ,  = 

constant (because f2 - f l  = F([312) - F(I3I, )= constant; 
cf. Equation 2) and thus 

E 
ln(tI2 - t l ' )  - R T  lnk0 + ln([3j-~ - [3i, ) 

(10) 

Hence, the activation energy can be determined from 
the slope of the straight line obtained by plotting 
ln(tl2 - tl,  ) versus 1/T(see Section 9.1). A value for ko 
can only be obtained if ~I~ and [3I~ are known, imply- 
ing adoption of a specific kinetic model (i.e. F([3) has 
to be prescribed; see Section 9.2 and Table I). 

This procedure allows determination of change in 
the activation energy as the transformation proceeds 
by suitable choices of a series of f l  and f2 values 
(cf. discussion at the end of Section 4). 

6. Recipe for non-isothermal analysis 
In accordance with common practice for non-isother- 
mal annealing experiments, in the sequel only the case 
of a constant heating rate, �9 = d T / d t ,  is considered 
(so-called isochronal annealing). Then ]3 (cf. Equa- 

i 
. J J  

= ,  , _  

a t  tr3) At(T z) t~t(~) 

Figure 4 The lengths of time, At, between two fixed stages of 
transformation, f1 andf2,  for isothermal transformations at T1, T2 
and T3 (see also Fig. la). The activation energy can be determined 
from the slope of the straight line obtained by plotting In (At) versus 
1/T (cf. Equation 10). 
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tion 3b) can be approximately written as (see Appen- 
dix 3) 

T 2 R 
- k (11) 

r  

Without recourse to any specific kinetic model, 
a value for the activation energy can be obtained from 
the temperatures T I, corresponding to a fixed stage of 
transformation f '  measured for a number of heating 
rates (Fig. 5). It follows (cf. Equation 11) (T},/~). 
( R / E ) k  = ]3 I, = constant (becausef '  = F([3I, ) = con- 
stant; cf. Equation 2) and thus [1] 

T 2 E E 
In cI) ~' - R T  I ,  + l n R ~  ~ + ln]3 I, (12) 

Hence, the activation energy can be determined from 
the slope of the straight line obtained by plotting 
In (7"},/el)) versus 1/Tj-,. A value for ko can be obtained 
if 13 I, is known, implying adoption of a specific model 
(i.e. F([3) has to be prescribed; see Section 9.2 and 
Table II). 

This procedure allows determination of change in 
the activation energy as the transformation proceeds 
by choosing a series of progressive f '  values. 

Hence, in retrospect, methods of kinetic analysis for 
the non-isothermal case on the basis of Equation 12 
are full pendants of those derived from Equation 10 
for the isothermal case. 

7. Non-isothermal analysis versus 
isothermal analysis 

To give preference to either isothermal or non-isother- 
mal analysis should depend on the case considered. In 
particular, if a series of overlapping transformations 
occurs, the degree of overlap in an isothermal experi- 
ment can be larger than the degree of overlap in 
a non-isothermal experiment. This can be illustrated 
as follows. 

% 

iP0  
. f  f=f '  

=7- 

Figure 5 The temperatures, TI,, corresponding to a fixed stage of 
transformation,if,  for non-isothermal transformations with heating 
rates % ,  q5 2 and qb 3 (see also Fig. lb). The actiiJation energy can be 
determined from the slope of the straight line obtained by plotting 
In (T2I,Fb) versus 1/TI, (cf. Equation 12). 



Consider three consecutive, more or less overlap- 
ping transformations, 1, 2 and 3, with activation ener- 
gies El,  E2 and E3, obeying E1 < E2 < E3. For the 
first stage of transformation 2 there is overlap with the 
end stage of transformation 1; for the final stage of 
transformation 2 there is overlap with the first stage of 
transformation 3. Because in the non-isothermal ex- 
periment the first and final stages of a transformation 
occur at relatively low and relatively high temper- 
atures, respectively, and realizing E1 < E2 < E3, it 
follows that, depending on the heating rate applied in 
the non-isothermal experiment and the temperature 
applied in the isothermal experiment and (the differ- 
ences between) the activation energies involved, the 
dominance of transformation 2 in the beginning and 
end stages of this transformation can be more pro- 
nounced in the non-isothermal experiment, compared 
to the isothermal experiment. This can be formulated 
differently: the range of heating rates for non-isother- 
mal kinetic analysis can be less restricted by overlaps 
with previous and next transformations than the 
range of temperatures for isothermal kinetic analysis 
of the separate transformation considered (see Sec- 
tion 9.2). 

8. Maximal transformation rate and 
Kissinger-like analyses 

For the maximal reaction rate, it holds (cf. Equation 4) 

d2f d2F([3)(df~'~ 2 dF([3)d213 - 0 (13) 
dt 2 - d]3 2 \ d t J  + d13 dt:  

In the case of isothermal annealing d2]3/dt 2 = 0 and, 
consequently, the maximal reaction rate occurs always 
at exactly the same value of ]3 (and thus f )  prescribed 
by d2F(13)/d13 2 =  O. (For the kinetic models corres- 
ponding to Equations 6 and 7 we obtain 13 = 0 and 
f~n = (n - 1)/n, respectively. Here it should be realized 
that 13 should be _> 0 and hence for the kinetic model 
according to Equation 6 the isothermal transforma- 
tion rate is maximal at ]3 = 0 for all m). 

In the case of non-isothermal annealing it follows 
that (Equations 3b and c) 

(d13 2/d213 - (14a) k R T  2 

dt J / dt 2 d) E 

and thus, for isochronal annealing, using the (approx- 
imate) Equation 11 

~-[ dt 2 - f~ (14b) 

Therefore, it can be concluded that the maximal reac- 
tion rate occurs always at about the same value of 
[3 (and thus f )  prescribed by (Equations 13 and 14b) 

2d~213 dF(6) _ 0 
]3d + d13 

) 
(15) 

Hence, the temperature, T~, where the reaction rate is 
maximal, i.e. the temperature corresponding to a point 
of inflection on the curve o f f  versus t (or T), occurs to 
a very good approximation at the same value fo r f fo r  
variable heating rate. (Assuming that Equation 14b 

holds exactly, the general solution of the differential 
Equation 15 (independent of a specific kinetic model) 
reads: F(]3r,) = cl In 13r, + c2, where 13r, is [3 at T = Ti 
and Cl and c2 are constants. This result is not of 
practical use. For both kinetic models considered here 
(see Equations 6 and 7) it is deduced from Equation 15 
by straightforward substitution that ]3r, = 1. Then it 
follows for the degree of transformation at maximal 
non-isothermal transformation rate, f r ,=F(13r , ) ,  
for transformation kinetics according to Equation 6: 
f r ~ =  1 -  l i e ( m =  1) and f r , =  1 - m  1/(1-m)(m> 1); 
and for transformation kinetics according to Equa- 
tion 7: Jr, = 1 - 1/e.) 

In the past a family of constant heating-rate proced- 
ures has been proposed for the determination of kin- 
etic parameters as activation energies. These methods, 
called here Kissinger-like methods (e.g. see 7, 8, 4, 9), can 
be considered as special cases of the one presented in 
Section 6: Equation 12 is applied for that stage of 
transformation where the transformation rate is max- 
imal; i.e. T s, is substituted by Ti in Equation 12 (see 
below Equation 15). As follows from the present treat- 
ment, the derivations of these Kissinger-like methods 
suffer from two unnecessary limitations: (i) a specific 
kinetic model is adopted; (ii) the dependence on heat- 
ing rate of only the temperature where the reaction 
rate is maximal is analysed. For example, in the paper 
usually referred to [7], the analysis is based on the 
assumption of homogeneous reactions, whereas most 
solid-state transformations are heterogeneous (cf. Sec- 
tion 4), and therefore this analysis cannot be applied 
apropos of nothing in the latter case. This has often 
been overlooked; a recent example is in reference [10]. 
In fact, the general proof for all Kissinger-like 
methods has been presented above: use of Ti for Ty, in 
Equation 12 is justified because the value o f f '  at the 
point of inflection on the curve of f versus t (or T) 
indeed is practically independent of the heating rate; 
see Equation 15 and its discussion. 

It follows from Equation 15 that for both kinetic 
models (Equations 6 and 7) 13 = 1 and hence 
]3r, ~ 1, implying that the last term at the right-hand 
side of Equation 12 vanishes. Then, in the application 
of Kissinger-like methods, after the activation energy 
has been determined from the slope of the straight line 
obtained by plotting ln(T~/qb) versus 1/Ti, the pre- 
exponential factor, k0, can be directly calculated from 
the intercept of the ordinate at 1/Ti = 0 (see Sec- 
tion 9.2 and Table II). 

For determination o f f ' ,  and thus TI,, or T~ in the 
case of Kissinger-like analyses, the reference states Po 
and Pl (cf. Equation 1), within the temperature region 
where the transformation occurs, are normally ob- 
tained by linear extrapolation from the temperature 
regions where the parent and product phases are 
stable (see Fig. 1); i.e. dpo/d T and dp 1/d T are taken to 
be constant. (Note: In a dilatometer the actual signal 
recorded is proportional to the quantity p (specific 
volume/length), not f, and T~ can be taken only ap- 
proximately equal to the temperature corresponding 
to the inflection point on the curve of p versus t(or T) 
[9], while in an apparatus for differential scanning 
calorimetry the actual signal recorded is proportional 
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to dp/dT (heat capacity; p denotes enthalpy), not 
df/dT, and Ta can be taken only approximately equal 
to the temperature equal to the temperature corres- 
ponding to the extremum in the curve of dud T versus 
t(or T)).Because dpo/dT and d p l / d T  will generally be 
different, and variable, significant errors may occur in 
the value calculated f o r f '  according to Equation 1, in 
particular i f f ' ,  or 1 - f ' ,  is small. An error calculation 
can only be made if a certain kinetic model is assumed: 
Appendix 4 provides such an error calculation for the 
Kissinger-like method. 

9. Examples 
Three cases of kinetic analysis of solid-state trans- 
formations, taken out of recent research in which 
I have been involved, are discussed in this section. The 
examples chosen serve various purposes: demonstra- 
tion of the "classical" case of isothermal analysis; 
application and benefit of non-isothermal analysis; 
comparison of isothermal and non-isothermal ana- 
lyses, and, finally, the use of the concept of "effective 
activation energy" allowing establishment of the 
dominant transformation mechanism as a function of 
time and/or temperature. 

9.1. Isothermal analysis: formation of 
Guinier-Preston zones in AIMg alloys 

Ageing at temperatures between, say, 290 and 350 K 
of A1Mg alloys containing more than 10 at % Mg 
in solid solution leads to the development of 
Guinier Preston (GP) zones in the aluminium-rich 
matrix [11]. The progress of GP-zone formation at 
a certain ageing temperature can be traced by measur- 
ing, as a function of ageing time, the amount of heat 
consumed for dissolving the GP-zones on heating the 
aged specimen. This can be done by performing differ- 
ential scanning calorimetry (DSC). An example of 
a result thus obtained is shown in Fig. 6 [11]. Consid- 
ering Fig. 6 and with a view to Equation 1, the degree 
of transformation for the process of GP-zone forma- 
tion can be given as (see also Fig. l a) 

A n  . . . .  ( t )  
f(t) = 

AH . . . .  ( t  = 0 0 )  

where -AHmea~(t) and -AHrne.~(t = oo) are the 
heats of dissolution after ageing times t and 0% 
respectively. 

15 

~ 10 

2 

5 <l 

�9 ,r,, 

10 3 lO 4 10 5 
t (S) 

O 

I 

10 6 

Figure 6 Enthalpy change for Guinier-Preston zone dissolu- 
tion (an endothermal transformation) for liquid-quenched A1Mg 
(16.1 at % Mg) aged at 333 K, as a function of ageing time. 

Now the procedure outlined in Section 5 on the 
basis of Equation 10 can be applied. Data f o r f w e r e  
obtained for GP-zone formation at room temperature 
( ~  293), 313 and 333 K. The determination of the 
activation energy, E, was performed with f l  = 0.2 and 
f2 = 0.5 and with f ,  = 0.5 and f2 = 0.8 (cf. Equation 10 
and Fig. 4). Values of f ,  smaller than, say, 0.2 and 
values off2 larger than, say, 0.8, should not be applied 
because the corresponding values for ts, and ts2 (cf. 
Equation 10) are relatively sensitive to error propaga- 
tion as a consequence of relatively small values for 
df/dt for small f and small 1 - f  The values thus 
determined for the activation energy read [-11] 

f l  = 0.2 and f2 = 0.5: E = 133kJmo1-1 

f l  = 0.5 and f2 = 0.8: E = 136kJmol  -~ 

In view of the experimental inaccuracy, the difference 
between both values for E should be considered as 
insignificant. Apparently the transformation mechan- 
ism is invariable for the region concerned in the T - t 
diagram (cf. Section 2). Interpretation of the result is 
not straightforward. It seems likely that the value 
found for E should be conceived as an effective value 
combining contributions of nucleation and growth of 
the GP-zones (cf. Appendix 2 and [11]). 

9.2, Isothermal analysis and non-isothermal 
analysis; tempering of iron-carbon 
martensite and austenite 

I ron-carbon austenite can be described as an f cc  
lattice of iron atoms containing carbon atoms in 

T A B L E  I Kinetic parameters for isothermal tempering of martensitic i ron-carbon steel (1.18 wt % C) [12] 

Process Annealing E JMA analysis Technique 

temperature n EjM A "~ 
(K) (kJ tool-  1) (kJ mo l -  1) (years) 

e/rl 388-424 116 0.6 114 ~ 4.5 dilatometry 
7 450-476 130 1.1-1.2 ~ 130 ~ 3 x 105 dilatometry 
y 443-531 127 1.1-1.5 ~ 127 ~ 1 x 105 magnetometry 

In the text of this paper a'  = martensite, ~ = ferrite, 7 = austenite, 8/q = transition carbide and 0 = cementite ("equilibrium" carbide). The 
symbols e/r  I and 7 in this table denote precipitation of the transition carbide (~' ~ e/~q + at) and decomposition of retained austenite 
(y ~ 0 + a). The activation energy, E, has been obtained by application of Equation 10. Symbols n, EjM A and r are the JMA exponent, the 
activation energy and the relaxation time at 293 K, respectively, as obtained by fitting the JMA equation (Equation 7) to the isothermal data. 
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T A B L E  II Kinetic parameters for non-isothermal tempering of martensitic iron-carbon steel (I.1 wt % C) [-12] 

Process (T:,(10 K m i n - l ) )  (Ti(10 K m i n - ~ ) )  E z Technique 
(K) (K) (kJ mo l -  ~) 

Segregation ( f '  = 0.5) 329 83 ~ 2 h Dilatometry 
Local enrichment ( f '  -~ 0.5) 354 79 ~ 9 h Calorimetry 
a/rl 415 111 ~ 2 yr Calorimetry 
S/rl 414 126 ~ 7 yr Dilatometry 
y 544 132 ~ 6 x 10 a yr Calorimetry 
0 580 203 ~ 2 x 1012yr Dilatometry 

In the text of this paper ct' = martensite, ~ = ferrite, ? ~ austenite, e/r I = transition carbide and 0 = cementite ("equilibrium" carbide). The 
symbols e/rl, 7 and 0 in this table denote precipitation of the transition carbide Gz' ~ r + ~), decomposition of retained austenite (g --* 0 + a) 
and conversion of transition carbide into "equilibrium" carbide (e/q + ct ~ 0). The average values for the temperatures corresponding with 
a fixed stage of transformation,f ' ,  and with the point of inflection are indicated by ( T:, ) and ( T~ ), respectively. The activation energy, E has 
been obtained by application of Equation 12. The symbol "~ denotes the relaxation time at 293 K. 

octahedral interstices. Quenching a completely aus- 1500 
tenitic specimen from a relatively high temperature, 
say 1100 K, to room temperature leads to a marten- 
sitic specimen composed of martensite (~') and some 7--'10o0 

E 
retained austenite (7). I ron-carbon martensite can be E 
described as a b c t lattice of iron atoms containing 
carbon atoms in, predominantly c-type, octahedral ~ 500 
interstices. Such a martensitic specimen is highly un- < 
stable: ageing at room temperature and heating lead 
to a series of phase transformations which are 
gathered under the heading "tempering" [12]. 

9.2. 1. Isothermal analysis 
Isothermal changes of specific length of i ron-carbon 
martensitic specimens are shown in Figs 7 and 8 for 
two temperatures. As follows from Fig. 8, the success- 
ive stages of tempering (denoted by arrows in the 
figures) overlap. Only for very limited ranges of tem- 
perature, is isothermal kinetic analysis possible for 
only a couple of the successive processes. 

A remedy to severe overlap by successive pro- 
cesses, as exhibited in curves of property, p, versus 
time, t, can be selection of another property, p, which 
is relatively much more or even only sensitive to the 
separate process to be studied. In this way the de- 
composition of retained austenite (y ~ 0 + ~) in the 
iron-carbon martensitic specimen could be analysed 
by means of magnetometry at temperatures where 
this is impossible by means of dilatometry (cf. Table I 
and Fig. 8). 

The data gathered in Table I were obtained by 
isothermal analysis according to Equation 10 with 
f l  = 0.2 and f2 = 0.8 [12]. 

A more constrained approach to isothermal ana- 
lysis involves fitting of the JMA equation (Equation 7) 
to the isothermal data. A well-known procedure is 
plotting of In [ln(1 - f ) -  1] versus In t; from the slope 
of the straight line obtained (cf. Equations 3a and 7), 
a value of n can be derived, while a value for k follows 
from the part cut from the ordinate. Next a plot of Ink 
versus 1IT yields values for the pre-exponential factor, 
ko, and the activation energy, E (cf. Equation 3c). 
Finally a relaxation time z = 1/k can be calculated for 
the transformation considered during isothermal an- 
nealing (for JMA kinetics, z corresponds to the time 
rteeded to transform a fraction 1 - 1/e ~ 63%). For  

I 

101 10 2 10 3 10 4 
t (s) 

r 

i0 0 10 5 10 6 

Figure 7 Relative length change, kill, of martensitic iron-carbon 
steel (1.18 wt % C) as a function of annealing time, t, at 403 K. The 
precipitation of g/rt carbide leads to length contraction (a' = mar- 
tensite; a = ferrite). 
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Figure 8 Relative length change, Al/l, of martensitic i ron~arbon  
steel (1.18 wt % C) as a function of annealing time, t, at 508 K. 
Clearly, the observed increase of length due to the decomposition of 
retained austenite, 7, is severely affected by pronounced overlap 
with the previous (precipitation ofa/r  I carbide) and next (conversion 
of ~/r I carbide into cementite, 0) transformations (~' = martensite; 

= ferrite). 

the processes dealt with, z was calculated at room 
temperature (293 K). Obviously, the values for ~ can 
be subject to large (extrapolation) errors. Results from 
this JMA analysis have been included in Table I. To 
distinguish the value of the activation energy arrived 
at in the JMA analysis from that derived above (using 
Equation 10) without imposing JMA behaviour, the 
JMA result has been indicated as EJMA in the table. 
The overall agreement between both sets of activation 
energy values could be considered as support for the 
assumption ofJMA behaviour. On the other hand, the 

3983 



range observed for the JMA exponent for the de- 
composition of retained austenite, on varying the tem- 
perature, could hint at the inadequacy of the JMA 
description for this transformation. 

9.2.2. Non-isothermal analysis 
Changes in specific length (to be considered as integral 
parameter p; cf. Fig. lb) and heat capacity (to be 
considered as differential parameter dp/dT) induced in 
iron-carbon martensitic specimens by non-isothermal 
annealing employing a constant heating rate are 
shown in Fig. 9a and b. The successive stages of tem- 
pering have been indicated by arrows in the figures. 

The kinetics of the processes occurring on temper- 
ing were established by determining either the tem- 
perature TI,, corresponding to a fixed stage of 
transformation f '  (see Equation 12), or the temper- 
ature Ti, corresponding to either a point of inflection 
on the curve of p versus T (dilatometry) or a peak 
maximum on the curve of dp/dT versus T 
(calorimetry: DSC) (see discussion below Equation 
(15) and the note Section 8), both as a function of 
heating rate, qs. The results have been compiled in 
Table II [12]. For each heating rate two to four ex- 

I I t 8 I 8 I I 

3000 * + ~- ~ 80 

2000 40 

E I.. 
:::I_ 

2 0  ~ 

.~ 1000 "" 
-/ J '  ', .... .-; \ 0 

- 2 0  
0 I i i F I 
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((]} r (K) 

I 

~ s00 700' 
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Figure P (a) Relative length change, Al/l ( - - )  and its derivative 
with respect to temperature, d ( A l / l ) / d T  ( . . . .  ), of martensitic 
i ron-carbon (1.1 wt % C) as a function of temperature, T, on non- 
isothermal annealing applying a heating rate of 20 K m i n -  l. The 
consecutive transformations have been indicated (~' = martensite; 

= ferrite; y = austenite; ~/rl = transition carbide; 0 = cementite; 
"segregation" denotes the segregation of a minor  amount  of carbon 
atoms (a few tenths of an atomic per cent) to lattice defects). (b) Rate 
of heat generation, dq /dT ,  of martensitic i ron-carbon (1.1 wt % C) 
as a function of temperature, T, on non-isothermal annealing ap- 
plying a heating rate of 20 K m i n -  ~. The consecutive transforma- 
tions have been indicated (cf. (a); "enrichment" denotes the develop- 
ment  of carbon enrichments in the martensite matrix, a process 
involving most  of the carbon atoms). 
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periments were performed; the average values for 
T r, and Ti have been indicated in the table. The 
activation energies, E, were determined on the basis of 
Equation 12. The pre-exponential factor, ko, was also 
determined: for the analysis based on the point of 
inflection on the curve of f versus T, this was done by 
ignoring the last term at the right-hand side of Equa- 
tion 12 (which is a justified procedure if, for example, 
JMA kinetics hold: [3(Ti) ~ 1; see discussion below 
Equation 15); for the analysis based on the temper- 
ature corresponding to a fixed stage of transforma- 
tion, f ' ,  this was done by taking in Equation 12 for 
In 13s., an estimate obtained by adopting JMA kinetics 
and substituting f '  for f and 1 for n in Equation 7. 
From the values obtained for ko and E, a relaxation 
time ~ = 1/k (see Section 9.2.1) can be calculated for the 
transformation considered during isothermal anneal- 
ing. For the processes dealt with, values for �9 at room 
temperature (293 K) were calculated and have also 
been included in Table II. It should be emphasized 
that the values obtained for ko and thus ~ can be 
subject to large extrapolation errors (see above). The 
estimates arrived at for z at room temperature provide 
an order of magnitude for the ageing time needed for 
a particular process to occur effectively during ageing 
at room temperature. 

For interpretation of the kinetic data gathered in 
Tables I and II the reader is referred to Reference 12. 

9.2.3. Comparison of isothermal analysis 
and non-isothermal analysis 

In the case of severe overlapping of successive trans- 
formations in the curve of property, p, versus time, t, in 
isothermal analysis, Po and Pl (cf. Fig. la) cannot be 
determined accurately, if at all. This is a major draw- 
back of the isothermal analysis. The determination of 
Ti in the non-isothermal analysis is essentially less 
sensitive to errors in Po and pl. As a consequence, the 
series of tempering processes could be much more 
completely subjected successfully to non-isothermal 
kinetic analysis (cf. Tables I and II). 

As follows from a comparison of activation energy 
values reported in Tables I and II for the precipitation 
of the transition carbide (a' ~ a/r I + ~) and for the 
decomposition of retained austenite (7 --* 0 + ~), the 
results obtained by isothermal analysis are similar to 
those obtained by non-isothermal analysis. This is just 
one example demonstrating the equivalence of iso- 
thermal analysis and non-isothermal analysis. The 
type of analysis to be preferred, in practice, should 
depend on the specific transformation(s) to be studied 
(see also Section 7). 

9.3. Change of effective activation energy 
during overall transformation: solid- 
solution formation and solid-state 
amorphization in Ni/Ti multilayers 

A multilayer is an alternating stack of sublayers of 
element A and sublayers of element B. Upon anneal- 
ing a multilayer composed of crystalline nickel and 
crystalline titanium sublayers, titanium dissolves in 



nickel and an amorphous phase develops both at the 
Ni/Ti interfaces and along the grain boundaries in the 
nickel and titanium sublayers [13]. The processes of 
titanium dissolution and "solid-state amorphization" 
overlap strongly. 

Solid-state amorphization and solid-solution 
formation are both associated with production of heat 
(i.e. loss of enthalpy). An example of a non-isothermal 
DSC scan, recorded with q5 = 10 K min-1, is shown 
in Fig. 10 for a Ni/Ti multilayer [14]. The structural 
interpretation of the heat effects was achieved by per- 
forming X-ray diffraction analysis. Thus the large 
overlapping heat effects below 700 K could be as- 
cribed to dissolution of titanium in nickel and to 
amorphization. Amorphization was found to continue 
up to 735 K; the sharp peak at 735 K in the DSC 
curve is due to crystallization of the amorphous phase. 
Consequently, the first major peak in the DSC curve 
(at about 580K) is assigned to solid-solution 
formation. 

To perform non-isothermal kinetic analysis on the 
basis of Equation 12 the enthalpy has been adopted as 
property p. The degree of transformation, f has been 
defined as the ratio of the enthalpy change measured 
up to a certain temperature in the DSC experiment 
(i.e. the area enclosed by the solid line (= dH/dt) 
and the base line (given by dH/dt = 0) in Fig. 10 up 
to a certain temperature (or, alternatively, time; 
qb - dT/dt = constant)) and the total enthalpy change 
(similarly measured from Fig. 10). This definition of 
fparallels the one applied in Section 9.1 in an isother- 
mal analysis. 

For specific stages of the combined process of solid- 
solution formation and solid-state amorphization, the 
effective activation energy of the overall process was 
determined by applying the method based on Equa- 
tion 12. This activation energy has been plotted as 
a function of temperature (i.e. as a function of the 
degree of transformation) in Fig. 10 (dashed line). Ini- 
tially the effective activation energy gradually in- 
creases from about 160 kJ mol-1 up to approximately 
200 kJ mol- 1. Then, right after the first main peak in 
the DSC curve, it abruptly decreases to about 
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Figure 10 ( - - )  The enthalpy-change rate, dH/dt (see left ordinate), 
for a heating rate of 10 K rain -~, for an Ni22Ti78 multilayer of 
average composition-modulation period equal to 22.11 nm (DSC 
scan). ( - - 3  The change of the effective activation energy, Eoff (see 
right ordinate), during the course of the overall transformation 
(combined solid-solution formation and amorphization followed by 
crystallization of the amorphous phase). 

140 kJ mol- 1, at which value it remains fairly constant 
up to the onset of crystallization. Dissolution of 
titanium in nickel has an activation energy that is 
larger than 200 kJ mol-1; whereas amorphization in 
Ni/Ti is associated with an activation energy of about 
140kJmo1-1 [14]. Upon heating, the contribution 
of the process with the higher activation energy (dis- 
solution of titanium in nickel), becomes increasingly 
relatively important and, accordingly, the effective ac- 
tivation energy increases. However, saturation of the 
solid solution is achieved at a stage where amorphi- 
zation is still possible and, consequently, on passing 
through that stage the effective activation energy then 
drops to the value corresponding to amorphization. 
The rarity of such an observation should be realized: 
the effective activation energy, in general increases 
when the temperature rises (see the reasoning two 
sentences above). 

The activation energy for crystallization of the 
amorphous phase can easily be determined by ap- 
plication of Equation 12, utilizing the corresponding 
peak temperature in the DSC curve as Ti which is 
taken for Tr in Equation 12 (see discussion below 
Equation 15). For discussion of the result obtained, 
271 _+ 13 kJmo1-1, see [14]. 

Appendix 1. Addit iv i ty  of relative t ime 
Defining 1([3) -= dF(13)/dl3, Equation 4b can be 
written as 

df 
- k ( T )  l(~) (A1) 

dt 

Equation A1 will be integrated such that f changes 
from 0 t o f '  (and correspondingly ]3 changes from 0 to 
13'; cf. Equation 2). 

A1.1. Isothermal t ransformation 
It follows from Equation A1 that 

r fo ts (T) f '  1 
k(T) dt = df (A2) 

jo / ~  

where t) s denotes the time required to transform the 
fraction f '  isothermally at the temperature T. Using 
Equation 2 one obtains 

fo' k(T)t~.~ = / ~  dF(13) (A3) 

and defining the right-hand member of this equation 
as L(13') 

k(T) = L(~ ' ) / tp~ (A4) 

A I . 2 .  Non- isothermal  t ransformat ion 
After substitution of Equation A4 into Eqaation A1 it 
follows that 

fo l lfo"l t~O(T~) dt - L(~') l~)  df  (A5) 

Again using Equation 2 results immediately in (see 
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above Equation A4) 

fo " dt 
t~O,(T ) - 1 (a6) 

A p p e n d i x  2. N u c l e a t i o n  a n d  g r o w t h  
A generalized form of the JMA equation accounting 
for both nucleation and growth reads [2] 

( ; )  f = 1 - e x p  - C  oV~(t)Itd~ (A7) 

where C is a constant indicating the maximal amount 
of volume to be transformed and v~(t) denotes the 
volume at time t of one of the particles of the product 
phase nucleated at time �9 when the nucleation rate per 
unit volume equalled It. Now, for both v~ ("growth") 
and It ("nucleation") Arrhenius-type temperature de- 
pendencies are assumed. Interpreting the activation 
energy for growth as the activation energy for diffu- 
sion, ED, the Arrhenius factor in vt contains an activa- 
tion energy equal to roDEo, where mD is related to th0 
dimensionality of the growth (e.g. for isotropic three- 
dimensional growth, mo obviously equals 3/2 as the 
radial growth rate is proportional to the square root 
of the diffusion coefficient). 

In the case of isothermal analysis the temperature- 
dependent Arrhenius factors in vt and It can be put 
before the integral in Equation A7. Under certain con- 
ditions (for the time dependency of the nucleation rate) 
the remaining integral over �9 will reduce to: constant 
x t", with n as the so-called JMA exponent. Then, 

eventually, the following well-known formulation of 
the JMA equation for isothermal analysis results 

f = 1 -- e x p ( -  k't") (A8) 

An example of a treatment on this basis (from Equa- 
tion A7 to Equation A8) is provided by [15]. 

As follows immediately from the above, the com- 
bined rate constant k'(T) can then be written as an 
Arrhenius factor too, with an effective activation en- 
ergy, E'eff, which is a weighted linear combination of 
activation energies of the separate contributing pro- 
cesses (as nucleation and growth); hence, in general 
(cf. above discussion on ropED) 

E ' e f f  = EmiEi (A9) 
i 

With a view to Equations 7 and 3a it is concluded 
that k" = k'. Therefore, if the kinetic analysis has been 
based on Equations 7, 3a and 3c and the value of the 
activation energy thus determined has to be con- 
sidered as an effective one, E e f f ,  it follows that 

1 1 
E e f f  = -E'effn = n~miEi-7 (A10) 

Appendix 3. The temperature integral 
For non-isothermal analysis with constant heating 
rate �9 = dT/dt, the time integral in Equation 3b can 
be replaced by a temperature integral 
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fo 13 = kdt = ~ e x p ( -  E/RT')dT' (All) 
o 

where use has also been made of Equation 3c and To 
indicates the initial state: ]3(To) = 0. 

The integration over T' cannot be performed ana- 
lytically. The "temperature integral" sooner or later 
appears in most more or less complicated procedures 
presented in the literature for non-isothermal analysis. 
A series of approximations to the integral have been 
proposed; ten of these are assessed in [16]. Here we 
proceed as follows. 

Equation A11 can be rewritten as 

13 = e x p ( -  ~/gr ' )dr '  

- f f ~  E/RT')dT'} 

= d z  

- To f ~  e x p ( -  E/RTo)z dz'~ (A12) 
1 Z2 ] 

where for the two integrals a change of variable has 
been applied according to z = TIT' and z = To/T, 
respectively. Adopting a usual development for the 
exponential integral [17] it is obtained 

T2 R k(  1 -  2 RT ) 
13 - q~ E E + ' ' "  (A13) 

where it has been assumed that between the braces in 
Equation A12 the second term is small compared to 
the first (To ,~ T). 

For solid-state transformations, RT/E ~ 1 norm- 
ally holds and this results in Equation 11. 

Appendix 4. Error terms in the 
Kissinger-like method 

If the degree of transformation, f, as a function of the 
physical property, p, is given by Equation 1 and if 
dpo/dT and dpl/dT are constant, it follows for the 
temperature Ti,p where d2p/dT 2 = 0 

df 
[d~2~ ~- C[~T]ri,~ (A14) 
L dT /r~,~ 

with 

( d p ,  dpo \  / 
C = 2 \ d  T ~ J / ( P l -  Po) (A15) 

Obviously, if dpl/dT = dpo/dT, [dZf/dT2]ri," = 0 
and Ti, p = Ti,y, where Ti,y ( =- Ti) is the temperature 
of the point of inflection on the curve of f versus T (or 
t; cf. Section 8). 

Adopting Equat ionAl3 and JMA kinetics (cf. 
Equation 7), one obtains for RTi/E ~ 1, and omitance 
of terms of order higher than RTI/E, 

In T2 E E 
@ - R Ti + lnRko + Resl  + Res2 

(A16) 



with 

c RT? 
Res 1 n 2 E (A17) 

Res2 = 2 1 - ~ + nln ~ E E 

(AlS) 

If it is allowed to neglect both residuals, the Kissinger- 
like analysis is possible (cf. Equation 12 and Sec- 
tion 8). 

It will practically always be justifiable to neglect 
Res2. However, no such general statement can be 
made for Res 1 (note the presence of C in Res 1). For 
any method of non-isothermal analysis where p is 
measured as a function of T or t (cf. Equation 1) it is 
advisable to verify the permissibility of the omittance 
of Res 1 in each case. 
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